
J .  Fluid Mech. (1986), vol. 167, p p .  43-53 
Printed in &eat Britain 

439 
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A large class of explicit solutions for Hele-Shew flow with a free surface is presented. 
The results are valid when surface-tension effects in the plane of the cell are negligible. 
Most of the solutions given produce fingers, both in channel flow and on a growing 
air bubble. Possible behaviour of these fingers is described, and a qualitative 
comparison with published experimental results is made. 

1. Introduction 
The phenomenon of ‘fingering’ in a porous medium occurs when, in the flow of two 

immiscible fluids, a fluid of higher viscosity is displaced by one of lower viscosity. 
The interface between the two fluids is unstable to perturbations of certain wave- 
lengths, and long ‘fingers’ of the less-viscous fluid penetrate the more-viscous one, 
leaving, in some cases, a considerable proportion of the latter behind. This instability 
is sometimes known as the Saffman-Taylor instability, and is of interest in models 
of secondary recovery of oil from underground reservoirs in which the oil is forced 
out of the ground by injection of a less viscous fluid, usually water. 

In view of the difficulties of performing experiments on oil reservoirs, there has been 
considerable interest in the use of a Hele-Shew cell as an experimental analogue of 
two-dimensional flow in porous media (Paterson 1981, and references therein). The 
equations we obtain from the simplest mathematical models of the two situations 
are, apart from a scaling, the same, and the Hele-Shaw cell is easier to use as an 
experimental tool. This is one motivation for studying Hele-Shaw flow; it is, in 
addition, an interesting problem in fluid dynamics in its own right, and the simple 
mathematical model which we shall use is a member of an important class of 
Stefan-type moving-boundary problems which are currently receiving much attention 
as models of processes such as crystal growth from a supersaturated solution, 
solidification of supercooled liquids, and freezing or melting of a dilute binary alloy 
(Langer 1980). 

In this paper we give some explicit solutions for finger development in one-phase 
flow in a Hele-Shaw cell (that is, a flow in which the viscosity of the less-viscous fluid 
is so small that i t  may be ignored). These are obtained by a complex-variable method, 
and they are valid under certain simplifying assumptions about the boundary 
conditions applied on the interface between the two fluids, primarily under the 
assumption that the effects of surface tension in the plane of the cell are small. The 
equations of motion and complex-variable method are briefly reviewed in $2, together 
with the linear stability of a typical moving boundary. 

Two configurations are considered. In the first, set out in $3, the growth of a small 
perturbation of a planar interface in a horizontal cell in the shape of an infinitely long 
channel with parallel walls is studied as fluid is extracted from far upstream. Of 
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particular interest here is that  we can find infinitely many exact solutions of which 
some, starting with small perturbations which may be arbitrarily close to  each other 
in some suitable measure, evolve through quite different intermediate stages into the 
same large-time, travelling-wave solution near their tip, a solution which was first 
studied by Saffman & Taylor (1958) ; others, however, can be shown to ‘blow up ’ in 
finite time via a cusp in their moving boundary. 

I n  the second configuration, described in $4, we present explicit solutions which 
represent the growth of radial fingers from an initially almost circular bubble of air 
in an  infinite cell filled with viscous fluid; the bubble expands as air is injected. A 
brief comparison is made with the experimental results of Paterson (1981). 

These solutions are given by conformal maps depending on a set of real functions 
of time which appear as coefficients in the mapping function. A necessary condition 
for the map to represent a solution is that these functions satisfy a complicated set 
of ordinary differential equations, and in $5 we discuss a connection between these 
equations and the shape of the moving interface which allows the solutions to the 
differential equations to  be written down immediately. 

Finally i t  may be helpful to  give a justification for studying these solutions. The 
model we use is a simple one, and as a model of flow in a real Hele-Shaw cell i t  has 
shortcomings; the chief of these is probably the neglect of surface-tension effects in 
the plane of the cell a t  the moving boundary. We can see the results of this neglect 
in the linear stability result (equation (2.9)), and even more dramatically in the 
widespread occurrence of finite-time blow-up via cusp formation in the moving 
boundary of this simple model (see $3). Nevertheless, there are still some solutions 
to the simple model which do not have finite-time blow-up. It is our belief that the 
inclusion of a small surface tension term at the moving boundary will, in some way 
which is not fully understood (but which is doubtless related to the improvement in 
linear stability thus achieved (equation (2.10))), act as a filter to  exclude those 
solutions of the simple model which have finite-time blow-up. That is, we believe that 
the solutions which are seen in practice when the surface tension is small are in some 
measure ‘close’ to solutions of the simple model which do not blow up, and that this 
is one good reason for studying the latter. Lastly they have intrinsic interest in the 
context of the other moving-boundary problems mentioned earlier. 

2. Equations of motion; linear stability; application of complex variables 
Hele-Shaw flow takes place when a viscous fluid moves slowly between two fixed 

parallel plates (which we shall assume to be horizontal), separated by a thin gap. The 
mean flow is two-dimensional, and the mean velocity components in the plane of the 
cell are given, in suitable dimensionless form, by 

(u, v) = -vp, (2.1) 

where the pressure p(x, y, t )  satisfies 

v2p = 0 

in the fluid region, which we denote by Q(t ) .  
At a rigid boundary inside the cell, the flow is tangential. At an interface between 

fluid and air, which is sufficiently thin to be treated as a curve aQ(t) in the (2, y)-plane, 
we shall take 

p = O  (2.3) 
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and, from mass conservation, 

(2.4) 

where n is the outward normal to 352 and V, the normal velocity of a point on aQ. 
This equation can also be written 

-- DP aP - -- Wp-vp = 0. Dt at 

These questions are discussed by Saffman & Taylor (1958). When the surface-tension 
forces at ai.2 are large in the lateral (2, y)-direction, (2.3) may be replaced by 

P = YK, (2.6) 

where y is a dimensionless surface-tension coefficient and K the lateral curvature of 
X?; (2.5) is no longer valid in this case, and (2.4) must be used. We shall only briefly 
mention situations in which a52 is highly curved and where (2.6) must be invoked 
even though y is small. 

The conditions at infinity are that for a growing bubble, with extraction rate Q > 0, 

while for flow in a channel with parallel walls y = fn, 

p--Vx asx+m,  (2.8) 

where the fluid is extracted uniformly with speed V far upstream, at a rate Q = 2xV. 
Lastly, we shall assume that, at  t = 0, 352 is a given analytic curve. 

We can examine the linear stability of a planar interface z = Vt (with fluid in x > V t )  
to perturbations with wavenumber n. The result is that a perturbed interface 
x = Vt + eat sin ny has, by the linear theory, a growth rate 

u = InlV (2.9) 

(2.10) 

if we use condition (2.3), whereas it is 

u = In( V- yJnI3 

if we use (2.6) (Saffman & Taylor 1958). Equation (2.9) implies that in the simple 
model with (2.3), perturbations of all wavelengths of a receding interface are unstable, 
with short-wavelength perturbations growing the fastest. We shall see later that 
receding interfaces can in fact develop cusps in finite time, and the solution can fail 
to  exist after that time ; indeed, any solution which does not develop cusps is ' close ' 
(in the sense of polynomial approximation at t = 0) to infinitely many which do. 

We shall present explicit solutions for both the configurations mentioned above. 
In  each case, using the complex-variable method of Galin (1945) and Richardson 
(1972), we map the disk 14 < 1 conformally onto the fluid region by a mapping 

z=z+iy=f( l ; ; t ) ,  (2.11) 

wheref(l;;O) is known from Q(0). We require that 151 = 1 goes onto af2(t), and that 
the origin is mapped onto the sink at infinity. For flow in a channel, we also require 
that the walls y = _+x are mapped onto a branch cut along the negative real-l; axis, 
while for flow outside a bubble we require arg z - arg (1/5) at infinity. The pressure 
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in the 6-plane is just (&/2x) In 161, and an application of the rules for change of 
variable in (2.8) gives 

(2.12) Q Re [-- _--  ( g3- 2x 
as a boundary condition for the unknown analytic functionfon 151 = 1 (Galin 1945). 
Any f with the appropriate singularities and which satisfies (2.12) gives a solution 
to the Hele-Shaw flow; in $53 and 4 we present several classes of such solutions. 

3. Channel flow 
The most celebrated Hele-Shaw solutions for channel flow are the travelling-wave 

lingers of Saffman & Taylor (1958). We shall presently discuss examples which tend, 
for large time, to these solutions; but first we show that any solution which does not 
develop cusps can, at t = 0, be approximated by infinitely many polynomial solutions 
which do. 

We shall assume that at t = 0 the fluid occupies the region to the right of a simple 
analytic curve joining y = --x to y = x and perpendicular to both. A suitable form 
forf(g; t )  is then 

in which h is analytic in 14 < 1 for each t ,  and is real on the real-gaxis. (This predicates 
that the finger is symmetric, but an asymmetric finger can be made symmetric by 
reflection in one of the channel walls.) 

It is required in addition that ldf/dgI > 0 in Ig < 1 and that f is 1-1 (Q(t )  does not 
overlap itself). 

Suppose now that we have a solution, such as the ones given later in this section, 
which exists for all t .  Then the function corresponding to this solution can, at  t = 0, 
be uniformly approximated as closely as we please by infinitely many polynomials 
of the form 

z = -ln{+h(g;t), (3.1) 

N 

consequently we can approximate Q(0) for this flow arbitrarily closely with a 
polynomial for h in (3.1). 

It can easily be shown that taking h to be a polynomial in g whose coefficients are 
functions of t does in fact give an explicit solution to (2.12): one obtains N+1 
differential equations for the N +  1 coefficients. It can also be shown that if N 2 1 
this solution cannot exist for all t ; this follows by integrating the first and last of these 
equations and obtaining a contradiction from a balance of terms as t + 00 (see Howison 
1986a for a similar argument in the radial geometry). 

We do not intend to discuss this blow-up a t  length since it cannot occur in practice. 
Here we merely mention that it typically results in a 3/2 power cusp (with infinite 
fluid velocities) in the moving boundary. There are other possible ways in which 
blow-up can occur, and more details are given by Howison, Lacey & Ockendon (1985) 
and Howison (1986~) .  Instead, we pass on to consider solutions which exist for all 
time without this blow-up; but we bear in mind the large class of blow-up solutions 
in which they are embedded. 

The travelling-wave-finger solution of Saffman & Taylor (1958) is given, in our 
notation, by vt 

z = --ln[+2(l+h) h ln+(l+g),  (3.3) 
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in which the constant A is the ratio of the width of the finger at x = - co to the channel 
width, and where the nose of the finger is at the origin at  t = 0. The feature of this 
solution that has excited the most interest is that the mathematical solution exists 
for any 0 < A 6 1, and more information is needed to specify A. If we regard channel 
flow as being one period of a periodic array of fingers without walls, then the spacing 
of the fingers may be taken as 27t (in the absence of surface tension there is no natural 
lengthscale in the problem), and so there is a one-parameter family of possible 
large-time travelling-wave outcomes of the fingering instability of a planar interface. 
(The celebrated question of which values of A will be seen in practice is discussed by 
Vandenbroeck 1983, Maclean & Saffman 1981, and in references therein.) It was 
pointed out by Saffman (1959) that there is an explicit solution, obtainable from (3.3) 
by allowing some of the coefficients to be functions of time, 

z = d(t)-ln[+2(1-A) ln!j(l+a(t)[), (3.4) 

which, if 0 < a(0)  < 1, represents the growth of an initially almost-flat interface with 
a small harmonic perturbation, z = 2a(0)( 1 -A)  cosy + O ( U ( O ) ~ ) ,  through intermediate 
stages until as t+ co, a + 1 and d - Vt/A,  and we retrieve asymptotically the 
travelling-wave solution (3.3) (see figure 1 a). Now the constructive way in which (3.3) 
is derived (Saffman & Taylor 1958) shows that it is the only possible form for a steady, 
travelling wave, single, symmetric finger, and so any unsteady solution with a 
travelling-wave limit must tend to (3.3). The evolving finger (3.4) shows that there 
is at  least one solution having the steady finger as its asymptotic form, and it may 
now be asked whether Saffman’s solutions (3.4) are the only such. We can answer 
this question in the negative by presenting a large class of explicit solutions of this 
type. They are simple generalizations of (3.4), given by 

(3.5) 
l N  

N n-1 
z = d(t)-lnc+- Z 2(1--h,) ln!j(l+a,(t)[), 

where for the moment 0 < a, < 1, and where A, the asymptotic width of the finger, 
is (1/N) Zz- A,, which must lie between 0 and 1 (note that if N > 1, some of the An 
may be greater than 1). 

Substituting (3.5) into (2.12) and equating coefficients we obtain exactly N +  1 
differential equations for d, a,, . . . , aN, whose solution with suitable initial values 
d(O), al(0), . . . , aN(0) determines uniquely the evolution of the finger. The O( 1) 
coefficient gives 

which is simply conservation of mass, while the remaining Nequations are complicated 
and will not be given here, since they can be integrated easily using the procedure 
of $5. Thus we merely give the result, a set of N transcendental equations linking 
d and the a,: for n = 1, . . . , N, 

l N  
d-lna,+- Z 2(1-Am) ln(l-aa,a,) = constant. 

N m-1 
(3.7) 

When N = 1, (3.5) is the Saffman solution (3.4). For N > 1 however, and for certain 
values of the A, and the a,(O) E (0 , l )  we shall see that we can get strikingly different 
behaviour near the base of the finger, although the tip is always, for large time, 
asymptotic to (3.3). 

Before giving specific examples, it is helpful to find the shape of the base of the 
15 FLM 167 
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fingers as t+”o .  It is clear from inspection of (3.6) and (3.7) that  as t +  “o, d - V t / A  
and a, - 1 -A, where A ,  are positive constants depending on the A, and 
a,(O), and where 6 = 1/2A(1 - A ) .  The base of the finger near y = 71 is the image 
under (3.5) of the segment -IT < Argg < -n:+O(e-6t) of 161 = 1, and setting 
C; = - 1 - i7 e-6t +o(e-&) where 7 is O( l) ,  we obtain parametric equations for the 
limiting form of the moving boundary as 

f o r O < r < c o ,  (3.8) 1 
l N  

N n-1 
x = constant+- E ( 1 - A , )  ln(A2,+79), 

y =n-- ~ ( I - A , )  arctan(&) 
l N  
N n-1 

with 7+03 being the flat side of the finger x+ co, y +An (which in coordinates moving 
with the finger tip is the downstream asymptote). The shape of the curve (3.8) can 
be varied by choosing different A ,  and A,, and we note in particular that we must 
have at least one of the A,  > 1 if we seek a curve which is not monotone in y (see 
the examples below). 

The figures used below were produced by rewriting (3.6) and (3.7) in terms of the 
A ,  rather than the a,, since the latter become extremely close to 1.  The only real 
computation involved was the solution of equations (3.6), (3.7) a t  each time at which 
a figure was required, which was performed using a library routine. I n  all the figures, 
V = 1 and the moving boundary is shown for t = 0 , 1 , 2 ,  . . . ,9 ;  the x- and y-axes have 
been omitted for clarity. 

Example 3.1 (figure l a )  N = 1 ,  a,(O) = 0.05, A, = 0.5. This is Saffman’s solution 
(1959) with A = !j; the initial interface is x = 0.05 cosy + O( 

Example 3.2 (figure l b )  N = 2, a,(O) = 0.01, a,(O) = 0.11, A, = 0.4, A, = 0.6, 
A = 0.5. Again the initial interface is x = 0.05 cosy + O( lop3), but now the base of 
the finger develops a ‘hump ’ as t + co , although the behaviour near the tip for large 
times is as in example 3.1. 

ExampZe 3.3 (figure l c )  N =  2, a,(O) = 0.2, a,(O) = 0.6, A ,  = 1.8, A, = -0.2, 
A = 0.8. The noteworthy feature of this example is that i t  forms a ‘neck’ a t  its base 
(note that one of the A,  is greater than 1 here, giving a negative coefficient in (3.5). 
This phenomenon is seen in practice (Taylor & Saffman 1958) and in numerical 
simulations of Hele-Shaw flow (Tryggvason & Aref 1985) although in reality surface 
tension and other effects which we have ignored will predominate near the base where 
the velocities are small, so that we do not expect our solutions to  give accurate 
representations of the behaviour there. It is nevertheless interesting that we can 
obtain this behaviour without recourse to these extra hypotheses, a point which also 
applies to our next example. 

Example 3.4 (figure id) N = 3, a,(O) = 0.2, a,(O) = 0.04, a3(0) = 0.4, A, = 2.65, 
A, = -0.05, A, = -0.8; A = 0.6. I n  this example, the extra term (from N = 3 instead 
of 2), allows a ‘secondary finger’ to  grow a t  the base. This behaviour is reminiscent 
of secondary dendritic growth in the solidification of a binary alloy or a supercooled 
liquid (Langer 1980), and although again we do not claim that our simple model will 
accurately represent real secondary dendritic growth, because i t  ignores diffusion and 
surface energy effects, it is again noteworthy that this kind of behaviour can occur 
even in the simple model. Similar secondary growths have been observed in the 
numerical simulations of Kessler, Koplik & Levine (1985), albeit in a radial geometry 
(but we can produce these secondary growths there too, see $4). Our example shows 
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FIQURE 1 .  Fingering in a channel: (a) Saffman’s solution; (b )  with a ‘hump’; (c) with a ‘neck’; 
(d )  with a secondary finger. 

15-2 
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(0)  

FIQURE 2. Fingers changing width in a channel. 

that anisotropic surface tension is not - as they conjecture - necessary for secondary 
growth. 

More complicated base shapes, including any finite number of secondary fingers, 
can be created by taking more terms in (3 .5)  and choosing the A, and a,(O) 
appropriately. In  particular, we may obtain one extra secondary finger every time 
we increase N by 2,  although whether we do or not depends on the precise values 
of A,,a,(O). (If we desire a base shape with a given number of turning points it is 
easiest to choose N ,  A ,  and A, from (3 .8)  and to run the problem backwards in time). 

We can obtain more solutions by relaxing the restriction 0 < a, < 1 in (3 .5) .  A 
particularly interesting example is to take N = 2 ,  a, = 1 , O  < a,(O) < 1. If a,(O) had 
been zero, this solution would represent a travelling-wave finger (3 .3)  with initial 
width A, = t(l + A , ) ,  and so the small term (1 -A,)  In (1 +a,(O)C) represents a 
small initial perturbation on a travelling-wave finger. At  t - t  00, however, a2+ 1, and 
the solution tends to another travelling-wave finger with final width A, = +(Al + A,). 
With suitable A1 and A, the finger can be made either wider or narrower by this 
perturbation, as in the next two examples. 

Example 3.5 (figure 2a) N = 2 , a 1  = l,a,(O) = 0.05,A, = -0 .2 ,A,  = 1.8(A, = 0.4, 
A, = 0.8): this finger becomes broader. 

Example 3.6 (figure 2b)  N = 2, a, = 1, a,(O) = 0.05,A1 = 0.6, A, = 0.2 (A, = 0.8, 
A, = 0.4) : this finger becomes narrower. 

For our final example of developing fingers, we realise that it is not in fact necessary 
to assume that all the singular points of f (C;  t )  lie on the negative real axis. Indeed, 
we can consider a generalization of (3 .5 )  of the form 

N 

in which the /3, are complex constants and the a, are complex functions of t  with 
lanl < 1 (the complex-conjugate terms ensure that the finger is symmetrical) ; we take 
the branch cuts to lie along rays from [ = - l/a,, - i / q  to infinity. Differentiating 
and clearing fractions we see that @f/aCaf/at is of the form 

N 

n-1 
P , N ( [ ) Q z N ( Z ) / n  11+anC1211+~C12> 

where GN and QZN are polynomials of degree 2N with real leading coefficients. When 
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FIQURE 3. Asymmetrical fingering in a channel. 

FIQURE 4. Growth of a bubble in a channel. 

we substitute into (2.4), therefore, and equate coefficients of powers of 5 and c, we 
will obtain N complex and one real ordinary differential equations for the a, and d : 
the real equation will describe rate of change of area, while we can integrate the 
complex ones by the procedure of $5. Equation (3.9) thus gives a very general class 
of solutions to the Hele-Shaw problem in a channel. The details are complicated in 
that we must choose starting values to ensure that f '  + 0 and that f is 1 - 1 for all 
t ,  and it is in fact possible to have cusps for N > 1 with an injudicious choice of 
starting values, but we will not consider such solutions here (see Howison 1986a and 
Bensimon et al. 1985). Instead we give the example 

z = d(t)  -In 5+p1 log (1 +a, 5)  +p2 log (1 -a2 c),  (3.10) 

in which a,, a2, p,, p2 are real and positive. Starting with 0 < as < a, < 1, we see an 
initially almost-harmonic perturbation of a planar interface which initially grows like 
a single finger (3.4), but a t  later times splits into two fingers symmetrically disposed 
above and below the centreline of the channel. These two fingers are themselves 
asymmetrical, and provided that 0 < p1-kp2 < 2,p1 4 p2, we can ensure that their 
limiting form near the tip is also asymmetrical (see figure 3, in which p2 = 1,  
p2 = 0.4, a,(O) = 0.4, a2(0) = 0.001). These asymmetrical travelling-wave limits were 
noted by Taylor & Saffman (1959). 

In our final example of channel flow we return to (3.5) and take N = 1, but we now 
allow a, to be greater than 1 .  In  this casef(c; t )  has another singularity at  c = - l/a, 
inside IC;I < 1, and we must choose h = !j so that we can take the branch 
cut for the logarithm terms between c = 0 and 6 = - l/al. The top and bottom of 
this cut are mapped onto the channel walls, and the unit circle is mapped onto the 
boundary of a bubble which grows as fluid is extracted from x = + 00 : see figure 4, in 
which al(0) = 2. This solution is similar to that of Jacquard & SBguier (1962), except 
that in their solution fluid is extracted from both x = + 00 and x = - 00, and their 
bubble is symmetrical. Again, near the upstream tip of the bubble, we retrieve the 
travelling wave (3.3) as t+ 00. 

In  the next section we turn from bubbles in channels to bubbles in infinite expanses 
of fluid without walls. 
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4. Radial fingering 
The second configuration that we discuss, and the only other for which any 

experimental evidence is, as far as we know, available, is that of a bubble growing 
by injection of air in an infinite expanse of fluid without walls. Using the same 
complex-variable technique as above we can construct classes of solutions analogous 
to those given in $3 for channel flow, and we can make a qualitative comparison with 
the published experimental results of Paterson (1981). 

The appropriate form for the conformal map from the unit disk onto Q ( t )  is now 

(4.1) 

where againfis conformal in 0 < IflI < 1,  and where a(t) is real and positive so that 
there is no rotation a t  infinity; again f must satisfy (2.12). 

Some results are known for this version of the problem. These we summarize; our 
interest is chiefly in new examples of ‘fingering’ solutions which exist for all time. 
Suppose that we consider an initial-value problem: we are given Q(O), the shape of 
the bubble a t  t = 0. We distinguish between three possible types of behaviour: 

(a) The solution may blow-up, typically via a cusp, after finite time. This can be 
shown to be the case whenever k( (; ; 0) is a polynomial of finite degree (Howison 1986a ; 
see also the brief discussion by Shraiman & Bensimon 1984), and thus our remark 
that there is a large number of ‘ bad ’ solutions close to  any ‘good ’ one holds in this 
configuration too. (On the other hand, i t  is possible for a cusp of a different kind 
(a %-power rather than a :-power) to form in i3R without blow-up; in view of the 
impossibility of realizing these cusps in practice we shall not discuss this point here, 
but refer to  Howison 1986a.) 

(b)  The solution may exist for all time and, as the area of the bubble tends to  
infinity, i t  may exhaust the whole space, in the sense that aQ(t) eventually crosses 
every point in Q(0). It can be shown that this exhaustion can only be achieved if 
aQ(0) is an ellipse, and in this case i3Q(t) remains an ellipse of the same eccentricity 
for all t (Howison 1986b, DiBenedetto & Friedman 1985). 

(c) The third possible outcome, and the one which is seen in practice unless the 
bubble grows extremely slowly (when case (b )  may apply because surface tension will 
stabilize small perturbations in the boundary) is that  the bubble may evolve a shape 
which, as t+ co , leaves some ‘tongues ’, or even isolated blobs of fluid behind. 

The main result of this section is the presentation of a large class of solutions with 
this behaviour. 

Guided by the solutions of $3, we try a combination of logarithms for k ( 5 ;  t ) .  We 
find in fact that  a solution exists for any k(fl; t )  of the form 

a(t) 
fl 

2 =f((;;t) = - + k ( f l ; t ) ,  

where cn(t), p, are complex (the argument is the same as that which leads to  (3.9)), 
but again the details are too complicated to  make a full study of this equation 
worthwhile. The most general form which we shall consider is 

N a(t)  
= -+PI x W-k log(cl(t)Wk-g)+/3, z w-k-*log(c,(t)wk+:-fl), (4.3) fl k-1 k-1 

where a,  c1 and c2 are real functions of time with c,,c, > 1,  p1 and p2 are positive 
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constants at our disposal, N 2 1 ,  uN = 1,  and the branch cuts for the logarithms are 
taken radially outwards from their singular points to infinity. 

Substitution into (2.12) verifies that (4.3) is in fact an explicit solution of the 
Hele-Shaw problem provided that f(5; t )  is conformal, and we obtain the equations 

Qt a2-Na(/31cl+/32~2) =-+KO, 
x (4.4) 

N N 

k-1 k-1 
ae1+pt z u-klog(c;uk-l)+/3, z u-k-i 10g(CiC*uk+l-l) = Kd, (4.5) 

where (4.5) holds for i = 1, j = 2 and for j = 1, i = 2; KO, Kl and K ,  are real constants 
of integration determined by a(O), cl(0) and c,(O).  The first of these equations is the 
rate of change of area for the bubble, while (4.5) is obtained by the procedure of $5. 

Suppose that we start with c,(O) and c,(O) large; aQ(0) is nearly circular, since then 
f (  5 ;  0) - a(O)/C+ O( [/c1, c/c2). As t decreases, c1 and c2 decrease, tending to 1 as t + a, 
and as singularities of the logarithmic terms in (4.2) approach 161 = 1, so the bubble 
develops 2N fingers of air leaving 2N ‘tongues’ of fluid behind (see figure 5). These 
tongues are arranged so that the N corresponding to the singularities a t  6 = c luk  
occur alternately with those corresponding to 6 = c2 uk*. The parameters B1 and /3, 
are equivalent to 1 - A  in a channel flow, in that the width of the tongues is xP1 or 
x/3, corresponding to 5 - cluk, c,wk* respectively. 

It is also worth noting that N is at our disposal. The number of fingers that will 
be seen in practice to emerge from a growing bubble (as, indeed, the number of fingers 
growing out of a nearly planar interface in a very broad channel) is determined by 
stability criteria involving inter alia surface-tension effects, which fall outside the 
scope of our simple model (see Paterson 1981). Nevertheless once N is chosen for us 
in this way, we expect that for small surface tension our solutions should be in some 
sense ‘near ’ to those seen in practice. 

The moving boundary has an asymptotic shape as t - tm which consists of a set 
of 2N tongues with parallel sides as r+  00, and with tips at z = Kl uk, K ,  uk+i 
(k = 0,1, . . . , N -  1) .  The shape of these tongues is the same as the asymptotic shapes 
of the channel solutions of 83, which follows from the similarity between the mapping 
functions. The tips of the tongues are at  our disposal through a(O), cl(0), c,(O), and 
we can, for example, choose K ,  % Kl (c,(O) % cl(0)) so that the influence of 
the singularities at  C = c,(t)ukY is not felt until the tongue corresponding to the 
singularities at 6 = c l ( t )  uk is well developed. In this case the solution mimics the 
‘finger-splitting ’ behaviour observed by Paterson (1981): see, for example, the finger 
in the fourth quadrant of figure 6 (although this is more asymmetrical than any finger 
we can produce with the two sums in (4.2)), figure 9 of Paterson’s paper, and example 
4.2 below. 

We give two examples; Q = 2x in each case. 
Example 4.1 (figure 5a) N = 3, = Pa = 2, al(0) = 10, cl(0) = c,(O) = 1.2. The 

initial interface is nearly circular, and six identical fingers develop. The time interval 
At between successive pictures of the interface is 100. 

ExampEe 4.2 (figure 5b)  N = 6, Bl = 3, /3, = 2, a(0) = 10, c,(O) = 2, c,(O) = 1.1, 
At = 60. Here the interface starts with six already pronounced fingers which soon 
split into twelve asymmetrical fingers. 

A detailed comparison between these solutions and the experimental results of 
Paterson (1981) would require a more general form for k ( g ; t )  than (4.2) in order to 
reproduce the asymmetries seen in his experiments. Nevertheless, the similarity 
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FIQURE 5. Radial fingering. 

FIQURE 6. A multiple-exposure photograph of an air bubble growing in a Hele-Shaw cell filled 
with glycerine (kindly supplied by Dr L. Paterson). 



Fingering in Hele-Shaw cells 45 1 

between one of the fingers in example 4.1 and the finger in the first quadrant of figure 
6 (which is a photograph of an expanding bubble kindly supplied by Dr L. Paterson; 
details of the experiment are given in Paterson 1981) are striking. A general 
observation is that the tips of the experimental fingers tend to be more rounded than 
the tips in these particular exact solutions, and that their bases do move outwards, 
albeit very slowly: both of these effects may most likely be attributable to factors 
such as surface tension at  the moving boundary, which we have ignored. 

Lastly we point out again that many more complex fingering patterns are 
attainable by taking a more complicated form for k(E;;t) .  For example, by adding 
sums of logarithms with branch points at g = c3( t )  &f, E; = c,(t)  wk*, we can make 
each finger split twice; by adding more sums of logarithms with branch points on 
the lines arg = 2kn/N, arg E; = (2k+ 1)  n/2N, we can achieve the same behaviour 
at the bases of the fingers as we did in § 3 in channels : clearly many other combinations 
could be made. The complete classification of solutions which do not blow up in finite 
time remains an open question, although DiBenedetto k Friedman (1985) prove a 
result that, given any asymptotic set of tongues of fluid (that is, a set of curves 
representing the boundary of the fluid after an infinite time has elapsed), and subject 
to certain symmetry and growth conditions on these tongues, one can prove the 
existence and uniqueness of a Hele-Shaw bubble solution (in the weak sense) tending 
to this set as t + 00. Unfortunately the conditions of the theorem are too restrictive 
to apply to our solutions, since one of the growth requirements is that the tongue 
thickness should tend to infinity as r -+ 00. 

5. The Schwarz Function for al2 
The differential equations that we obtain for the functions of time in our solutions 

are complicated (except for the one which expresses conservation of mass), and it is 
fortunate that we are able to write their solution without having to solve them 
directly. The procedure relies on a transformation of the dependent variable 
introduced by Lacey (1982). We first suppose that we can solve for the moving 
boundary in the form t = w(x, y) for each t : successive moving boundaries are thus 
level curves of the function w(x, y), which is defined at  all points crossed by the moving 
boundary in 0 < t < co (or while the solution exists). We shall call this region R. We 
now define 

W ( X ,  $4) 

u(x, y, t )  = - I, P(X, Y, 7 )  d7 (5.1) 

(5.2) 
t 

= 4 x 9  Y, 0) + J p(z, y, 7 )  d7 
0 

for (2, y) E R. Direct differentiation shows that 

V2u = 1 in Q ( t )  n R, (5.3) 

(5.4) 
au 

with u = - = o  on aQ(t) ; 
an 

(5.5) 
au 
at 
-- - p  in Q ( t )  n R. note also that 

Equation (5.3) allows analytic continuation of u into D(t)\R for each t ,  although 
such a continuation will in general have singularities. However, since p is without 
singularities in Q(t) \{00},  (5.5) shows that the singularities of u in Q(t) \{00} must 
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be those of u(2, y, 0) only, and that they are constant in time. (It is possible for the 
analytic continuation of u outside Q(t), i.e. into the air, to have moving singularities, 
and indeed any fmite-time blow-up is usually associated with one of these moving 
singularities reaching aQ(t) and causing a cusp. If the moving boundary were to cross 
one of the internal singularities of u there would also be a loss of analyticity in aQ(t); 
however, no examples of this behaviour are known, nor even whether it is possible.) 

The observation which permits us to integrate our differential equations is that 
there is a connection between u and the mapping functionf( 5;  t )  which generates aQ(t). 
First we note that aQ(t), being an analytic curve, can be written in the form 

z = g ( 2 ;  t ) ,  (5.6) 

where g is analytic in a neighbourhood of aQ(t)  for each t : g is called the Schwarz 
function of aQ (Davis 1974). 

Now consider u - ~ z Z ,  which is harmonic: us- iu, -!$ is thus an analytic function 
which, using (5.5) and (5.6), is equal to -! jg(z; t )  on aQ(t). Hence, using the identity 
theorem for analytic functions, 

u,-iu, = + ( Z - g ( z ; t ) )  (5.7) 

wherever either exists. This result is due to Lacey (1982). Equation (5.7) shows that 
the singular points of u and those of g are one and the same, and in particular that 
the singular points of g inside Q ( t )  must be constant in time (and that if the solution 
exists for all time without developing cusps, the internal singularities of g must remain 
internal, since they cannot be crossed by aQ(t)).  

The procedure is thus to look at the internal singularities of g, via the equation 

g(z(Y;t)) = 9 ( 5 ; t )  =f(llW =f(C;t) (5.8) 

(0 is the function which is equal tof(5; t )  = Z on 181 = l), and to use the fact that they 
are constant in time. In all our examples we have just a sufficient number of 
singularities of g inside 151 = 1 that we can integrate all the equations we need to. 
For example, in (3.4), f(5; t )  has a branch point at 5 = -a(t), corresponding to 

z = d(t)-lna(t) + 2(1 - A )  ln!j(l -uz(t ) )  kin,  

and this gives (3.7) ( N  = 1) immediately. We also observe that whenever a ‘tongue’ 
of fluid is formed there is a singularity of g at its tip, so that if we wished to construct 
a solution ending with a given number of tongues in specified positions we could 
attempt to do so by constructing a g with the appropriate singularities. This is, 
however, unsatisfactory in that the construction can only be carried out post fucto 
and not in a predictive way. The question of exactly how surface tension ‘selects’ 
a particular solution from the many candidates (both blowing-up and existing for 
all time) remains a challenging problem. 
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